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1.Overview ofLectures 3 + 4



2.Classical Generalized Maxwell Theory

Begin with4d Maxwell on IM"3
+ 1 Mink.

Fieldstrength FER(IM")
space

Spacetine splitting ->electric/magnetic
field decomposition
F=Fn+Fe=EijkBidxndx" +Eidxidy

Vacuum Maxwell equations
dF

=0 => E
.B =0

exercise! +x =0

To write the other two Maxwell

equations we need the Hodge *
operator: ·



Hdge*:Let (Mn, gur) be an
n-dimensional manifold witha nondegenerate
metricgur EN(Sym" T*Mn) of

any

signature.
Assume Mn is orientableand
an orientation:->>

Ivoly) e"(M.), nowhere zero

In local coordinates:

val(g) =atynt dxe-dy"
e
determinedly orientation
ofTp* Mm

Now we define a linear
operator

*: *(M.) --"M_)
To do this we firstintroduce the

local inner product on AlT*M.p



Gredxn-ndxee
(P): =gr.... graveanIru?re
Then the formula:

(=(x,y)val(g)
fines since itholds for alla

Note:C14B =

prxc

ercises.I 2:Re-
acts as multiplication by the sign

44=f,)ex-e?signldetgrr)



② In local coordinates

*(dxY--ndxMM) - garMi-M-dxee
withG-n= +1.

③ For
a productG, *geon M, xMzmetric

and productorientation val(gi) a val(ga)
k k2

W, c (M) and wat (M2)
*(2,1w2) =(-1)*2(n,

-x)

*g,w,)x(*gW)
n, =cimM,

④ Under conformal transformation

gar=gn=> *gin/en*Y-**gar



⑤5 M'l grrdxidy"=-dxodxo + dx'edx
Orientation:val(g) =dx'adxo

*dxF=Idx, x
=

=xIX

⑥ M"* grv='+'+1,) valIg)=dYOR3

*(dXondxi) = -Ieidxindx*
*(dxadxs) =tijn dx"ndxR

⑰ On Euclidean RD with orientation:

dx'n-ndx* =rD-1drap-1
=>Adr =rD-12D-1
=>xd() = -( -2)- 1

Introduce unitvalume form on

-D-1 Wp-1 =ha-1/e



Ux =2xP2/r(D/2)

dap-1=Ylobeande
=>d(* ) =y(03)
Solution to exercise 1:

Katsom



Choose an ON basis for Tp*Mm

el.... en so
thatthe crientation

valume form is en-ne" and

(e4,e) =yx8y=)+13
For a multi-index I=(a, x2 --. xe)
Let Ic = (P,<<...<Bure) be
the complementarymulti-index.
Define a sign s(I,Ic) by

exetc =s(I,Ic) ein- e

Note thatetnet?(Iet
So ((n -1)
S(I,I)sc,I) =(- 1)



Now *eF=y*y4s,Ic) eFa
* 2
=

yyes,I) eF
ex-es
e
I

so * eF =y'-y"(1)
en-e) I

=sqn(detgrr) (-1) e
B



2nd Maxwell equation (in vacuum):

d* F Frise! EIre
Now generalize to arb. Manifolds with

nondegeneratemetric:(Ecea. or Lowsignature)
(Mr,gr):FE (Mn)

/I

generalized
Maxwell

theory"
EOM. dF

=0 !d(*)=0
N.B. Electromagnetic (Hodge) duality:
E
=xF&(M.) satisfy a

pair of equations of the same type.with1-(n-1)

Ex: For MM'swork outin terms
-

ofand B



Solutions: Constanttensor

- ↓ ix.x
A)Lorentz in!n-1 F =P

2

show le*0: speed of light

Solution space
is an is-dimensional

linear space.

(B.) Each signature: Riemannian (Mn,g)
? Mn compact.

Hodge decomposition:Puta

nondegenerate inner product
on

&*(Mn) (,): = *
Then dt=I*d*
We have an oradecomposition



.*M1) =I "(Mn) *Im(d:"r)
①Im(dt.**4)

H"(Mn) =vector space of
hamanic farm da=okd =0
An important than welluse a
lotis the Hodge theorem

12"(Mn) =H(Mn)

-Didthe
Findiml. real vectorspace.



Remark1:There is a nice
-

connection to ken Intriligators lectures.

If Mn is the large me of a

SQMThen the Hilbert space
of the SOM is (M.),
the susy operators

are d, dt
and the supersymmetric round states

are the harmonic forms. g

Here we are studying dynamical
fields on a spacetime Mr.
Same mathematics. Very different

physics.



Remark 2:An Important
Generalization of Generalized Maxwell

Theory: The Self-Dual
Field.

Suppose n =el

* *2 =E1)sgn(etgrr)
=>We can impose self-dualityegs
on reach fieldstrengths:
E=xF (SD field) & F= - *F (ASD field)

Consistency ->Euclidean sign:n=0 mod4

Lorentz sign:n=

2 Mod4

If we also impose dF =0 then

The other Maxwell equation comes
for free. This isthe classical

Theory ofthe Canti-selfdual fiedl



Example: IM", -dxI(x', dx*dy"

F = ** -) F=G(x,x)dxt
n

R-vabefunction

masslessdF
=0
=0,0 =0 chinal

scolor



-Principle:Letus return to the

nonselfdual field. To writean action we

must break electromagnetic duality. We
wantto use Stokes lemma so if we

prefer the to can them

dF =0 => locally we can write
EdA

At2(2)
I
localpatch

Obstruction towritingEdAglobally is

H(M) =Ker(dinfo/im(dicte

For afixed coh class I choose
a representative to with h =[E.]

Writes F=Fo +dA Azd(Mn)



For all other closed in that

class. Then on that set me have

SCI =f 1 F*F

Stationarity ->d(*F) =0
Hodge theorem: For Eval. Signature
I: minimum of the action.

Action also gives couplingto
gravity and hence energy-momentum:

TFeN(Sym2*M)
Exercise (a) If veTM showthat

'TENIE(rE, 2rE) -(Y] (FE)p
(b)FF =FE

(generalizes dualityinvan'anceofEIB ExB



Remarks:

① In the self-dual case F=I*F
and n

=

2 mody we have l=1 mod2

is and hence SENAF:SEnF =0.
Hence there is no obvious Lorentz-init

action.There do exist (many) actions
for the self-dual field, butmuch more needs
to be said. Itisimportanthere that are
are workingwith Abeliangauge theory "

Standard folk-wisdom states that
There is no description ofa nonabelian

-

analo in terms of elementI tany
fields and a local action.

(There are local fields in the
nonabelian analog, e.g. the

energy-momentor tensor)



&Kaluza-kleinreduction shows it is
much more natural to considercollections

ofgeneralizedMaxwellfields withaction

Iexp(/xij F**r+Gij FiaE
↑

nondeg.Symmetric
'I
symmetric or
antisymmetric

So it is natural to generalize
generalized Maxwell theory

to

FeOR(Mn,VE) for a graded
4,q

rector space V equipped with
Suitable bilinear farmS



③ In the case l=1 we

can writeE
=do locally

butthe scale field mightnot
be globally defined.

If wetake pe M2x
then the factorXhas the

meaning of radius-squared of
the

targetspace
circle of4.

1In general the
nonlinear

--model action

S9ij(Y) hMOXdXralshsM

shows that the ticker

defines a lengthon targetspace)



3.Electric Magnetic Currents

Vacuum dF =
0 $d4F =0

-

Currents Jet Jet2*e)
+1

Response of field tobackendcurrent

dF =Jm d(F) =Je
Note:
1.JmtO-> FFdA. Magnetic
current obstructsthe existence of a

gauge potential.
2. dJm =d5e =0 current conservator

3. SmoothF => Jm,Je cohomologicallytrivial.
->Puzzle:Shouldn'tthe cohomology
Class of be somehow measure charge?



Introduce notion of relative cohomology:
(See Bott+Tr):Given an inclusion is:A4X
X

⑰ The relative chain complex is

G(X,A) =rex)or(A)
differential d(a,0) =(dw, 2*a -d0)

Exercise:(a) Check d =0

(b) Show that "closed"means do=0 and
WIA is trivialized-

Define H(X,A) =
=Kewd/imd

Now

0 -r)-"(X,A)-Mixto
0 - (0,0)

[0,0e w

induces LES in cohomology:



restriction

-H)-H*(X,A)+HYx)EHYA)- ...

Note Mat (50, *F) is exact, but

[25e,0)] could be a nontrivialclass in
Hip(M, M-5e)
N-5: = M-Supp/e)

-HM)**A*Tpire)I HTY, aise)
* Hr

-

(M) -> ....

KerY EimdHY (NTe/*H



The electriccharge group is,
by definition the kernel ofi
and by the LES

Ge = H(NTY/*HYTMe)
HE (Me):Classical flux
geonedeye orexes

not

This is the mathematical

expression ofthe idea that

the charge is measured by
the

11

Hux at 0.



If Mn=R=xNn-, andthe

supportof Je is compact for
all time we can identify Re
as the kernelof

HI (N)-AN



4. Branes

p-branes are extended objects generalizing.
pointparticles

withworldvolumes:

2=SpxRc c Nr-, XREMne

In a generalized Maxwell theory
electrical branes can be viewed

as objects which produce an electric
current:

I - qey(M)e

-+1)form
Poincare dual to We

d*F=Je => P-l-2
Solution when SpHe is a

myperplane in spatial ***



HeERP

->HIRPeI De =(-1) -p =n-1+1

=Anda val(Hei

HO(W)**(Mn,MW)
12

=9.5254,01



Similarly membranes
Would have a world volume

Wm=Smx< N,M
Pr-dire

and produce a magnetic
current:

·dF=gmY(Wm<>M)
e
(1H)- form ->P=n-1-2

1,4
In M

F =2igmWICUIunit volume
ofSHe



5. Action ForTestBranes

keyinsightof Joe Palchinski:
Branes are notjustsolitan solutions

in supergravity
butare dynamisch

objects which mustbe
included

in the descriptionofthespace
of

states in string theory
Unlikedeets, bromes can

wiggle and more. These
S

are among their internal

deg Rees of freedom.



So-similar to the AdS/CFT
correspondence

- we can I

change our pointofview and
consider the world volume

Theory ofatestbrane
moving ina prescribed field-
I -

configuration-
-

Let's start witha point
electric change in 1=2Maxwell
on a Lorentz signative spacetime
Mn with prescribed field

F



For an unchangedparticle -

the pathintegral
has "DBE

action

expEIds ds=de
We

x =time coordinate along
world line

T="tension" -mass of particle

EM = geodesic eg:

a(r) =0



Lorentzforce:If particle
has change ge:
④(T) =geFra
=>new action

exp(s) x (e)
If F =dA AtYMn)
x(W2) =exp (E28A)
produces eq(*) above



Now we note two key
properties which

will be defining
-iproperties of

the
map X.Geired] -> USI

*If we have multipleparticles
Then the actions should addso
if we replace the worldline by
W, IW, Then

x (m, 12) =x(w,)x
So if we restricttol-cycles

x=Hom(Z,(M), UCK)
is a homomorphism ofAbelian groups.



haved③ If me a worldline
ofthe

and itis form.N=0 Be for
some disc ther

=exp(fget)
These physical considerations
motivate the mathematical definite

Def. A Cheeger-Simons character
of degree 2 is a grouphomam:
x=Hom(ZMn), USK)

withthe special propertythat
There existsFCM.) such

that, whenever W,eZ,(Mn)



is the boundary ofa 2-chain:

W, =dBe

x(,) =exp(i(F)
The set of such characters has

a naturalAbelian group
structure

(X,x-)(w) =

=x,()X2W)

and forms an is-diml Abelian

group denoted (M) known as

The Cheeger-Simons or differential

cohomology group of degree 1
=2.



#e:1 We have absorbed

The galt into F. So "F"
in our physical motivation

is not

exactlythe same as
"F"in

The definition of the Cheeger-Simous
group.
② (A)+B) =>quantization ofa

⑪
W,

Zz =Be UBS is a closed

2-cycle in Mr -> The

fieldstrength 5 of part(B)
satisfies exp/iSz-F) =1



-> We Mr)
Remarks ·

1. Anysform which has

Iallperiodsles in 2re

&(M) <> (M):=kerd)2

2.The
ang
ument above is closely

related to Dirac'squantization

argement forproduct
ofelecticte

=()
8-X



Putting back the to and
ge

The world line action on M90}
has action

8eigeA *gm
~y

=ef -I fget
=e D-

but DrUD-= Closed 2-cycle
enclosing magnetic source F=gmWa

e
ISgmWe=me 2+2

thegageareproportionalchaosare
depending on 2, n.



trivialFact:Every CS
Character is The Lalonomy
function of some connection on
some principal UII bundleoverM.

x(w) =Hol(7,W)
for some connectionor some principal
UCI bundle PM.Iinformally wecan
write x=d+A and Hal(4,W) =expli SA)but Ais not globally well-defined.
The halonomy is gauge
invariant and in fact the

holonomy function on Z, (M)
carries all the gauge

int

information:



By the holonomy function we
mean?

Haly :Z,(M) -> UllT

I=d+A E-Hal),wil
↳

I ="expiSaA"

This will follow from properties
of the group (M)

derived

below together withthe
following very

useful theorem

about connections on principal
G-bundle, for compactgauge

group G



them:Let P-M be

a principal G-bundle with
connection and define

Hole:Z_(M)-> ConjClass(G)

If G is compact
and

Holy =Hale, then
PEP'

and 7, 7'one gauge equivalent.
* Note:There are counterexamples
Wher G isnoncompact. (For GLn, c)The RH problem gives a counterexample.)
See A. Sengupta, "Gauge Furniant
Functions Of Connections, "Proc. Am. MathSoc
Vol. 121, pp. 897-905



We can now get
a picture of

the Abelian group FM).
Note thatfor each x=HYM,2)
Iprincipal UCII bundle Px+ M
witha (PX) =x.. Let

(A/y),be the set of gauge
equivalence classes of connections
on PX. We have

MEM) =1 (AM)
x

x c+(M,2)

Nowforanyprice
in



P=M APP:=Con(P-M)
is an affine space

modeled

on (MiadP):
Choose a basepointconnection to
Then every

other connection is of

the form 7 =Yo + X

2 -(M; ad4)

For G =UII) adP =MxHis trivial

re(M;adP) =- (M)

7 =

Toth, Globally
defined
1-form



Gauge transformations:

2- x+ww= 2,(M)
1

large" o has nontrivial periods
"small

II

u =de, ce (M)

globallywell-defined.
Now remember Hodge decomposition:
D'EH'*Imd *Imdt

r* Hz,* Imd

rir ze, *Imdt



See, noncanonically
- we can

FTM)=IxNx V
bi=Connected torsus=HH,=UIK

T =fin. generated Abelian group-tP(MR)
V =-dinalrector space:

v=Im(dt: 2+r')
Note thatif26 Indt them

dtx =0 i.e. dim. This is
The well-known Landam

garge fixing.


